172 research outputs found

    Coding for Fast Content Download

    Full text link
    We study the fundamental trade-off between storage and content download time. We show that the download time can be significantly reduced by dividing the content into chunks, encoding it to add redundancy and then distributing it across multiple disks. We determine the download time for two content access models - the fountain and fork-join models that involve simultaneous content access, and individual access from enqueued user requests respectively. For the fountain model we explicitly characterize the download time, while in the fork-join model we derive the upper and lower bounds. Our results show that coding reduces download time, through the diversity of distributing the data across more disks, even for the total storage used.Comment: 8 pages, 6 figures, conferenc

    Efficient Task Replication for Fast Response Times in Parallel Computation

    Full text link
    One typical use case of large-scale distributed computing in data centers is to decompose a computation job into many independent tasks and run them in parallel on different machines, sometimes known as the "embarrassingly parallel" computation. For this type of computation, one challenge is that the time to execute a task for each machine is inherently variable, and the overall response time is constrained by the execution time of the slowest machine. To address this issue, system designers introduce task replication, which sends the same task to multiple machines, and obtains result from the machine that finishes first. While task replication reduces response time, it usually increases resource usage. In this work, we propose a theoretical framework to analyze the trade-off between response time and resource usage. We show that, while in general, there is a tension between response time and resource usage, there exist scenarios where replicating tasks judiciously reduces completion time and resource usage simultaneously. Given the execution time distribution for machines, we investigate the conditions for a scheduling policy to achieve optimal performance trade-off, and propose efficient algorithms to search for optimal or near-optimal scheduling policies. Our analysis gives insights on when and why replication helps, which can be used to guide scheduler design in large-scale distributed computing systems.Comment: Extended version of the 2-page paper accepted to ACM SIGMETRICS 201

    Throughput-Smoothness Trade-offs in Multicasting of an Ordered Packet Stream

    Get PDF
    An increasing number of streaming applications need packets to be strictly in-order at the receiver. This paper provides a framework for analyzing in-order packet delivery in such applications. We consider the problem of multicasting an ordered stream of packets to two users over independent erasure channels with instantaneous feedback to the source. Depending upon the channel erasures, a packet which is in-order for one user, may be redundant for the other. Thus there is an inter-dependence between throughput and the smoothness of in-order packet delivery to the two users. We use a Markov chain model of packet decoding to analyze these throughput-smoothness trade-offs of the users, and propose coding schemes that can span different points on each trade-off.Comment: Accepted to NetCod 201
    • …
    corecore